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1. Introduction

In this paper, we consider the following problem:

(1.1)

{
− div (Φ(∇z)) = f(x, z,∇z) in Γ

z = 0 on ∂Γ,

where, Φ : BRN (1)→ RN , with BRN (1) an open ball of RN centred at 0 with raduis
1, is a homeomorphism which is the derivative of a concave function and defined

by Φ(∇u) = a(∇u)
∇u√

1− ‖∇u‖2
, where a : RN → R is a continuous function,

f : Γ× R× RN → R satisfies Caratheodory conditions.
The scope of this study is relativity. For example, the dynamics of a charged

particle in an electric and magnetic field when the velocities of the particles are
relativistic. In addition, this problem can be a model of certain phenomena in
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classical physics, such as the shape of a film of soap stretched on a string, cap-
illarity and wetting phenomena, the curved surfaces of liquids in contact with a
solid, the growth of crystals, plasma physics, non-linear optics and so on. Over
the last two decades, several authors have taken an interest in this type of prob-
lem. See, for example, the articles [1, 2, 3, 4, 5, 6, 7, 8] and references contained
therein. In [1], the authors are interested in positive solutions defined on all RN
and vanishing at infinity whereas in (1) as in other references, the authors are in-
terested in positive solutions defined on a bounded part of RN . Contrary to (1.1)
and [2, 6, 7], [3, 4, 5, 8] deal with positive radial solutions. These papers deal
with the prescribed mean curvature problem in a Minkowski space governed by the

homogeneous differential operator − div

(
∇u√

1− ‖∇u‖2

)
while, in this paper, we

consider the non-homogeneous differential operator − div

(
a(∇u)

∇u√
1− ‖∇u‖2

)
.

Consequently, this work generalises previous work. For such a problem, using the
same approach as [7], we will establish the existence and multiplicity of solutions. In
fact, by combining the method of lower and upper solutions, variational method and
theory of topological degree, we obtain the existence of a solution when the problem
admits a unique lower solution or a unique upper solution; we obtain a multiplicity
of solutions when the problem admits a lower solution and upper solutions which
may or not be well-ordered.

The rest of the article is organised as follows: in the second section, we establish
three auxiliary results, the first two using the method of lower and upper solutions
combined with the Leray-Schauder topological degree theory, and the third using
the method of lower and upper solutions combined with the variational method.
The third section is devoted to our main results. In the section four, we give some
application examples. The last section is reserved for the conclusion.

2. Auxiliary results

Our assumptions about the problem data are as follows:

(HΓ): Γ is a bounded subset of RN which has a boundary ∂Γ of class C2,

(HΦ) : Φ : BRN (1) → RN is a monotone homeomorphism and gradient of a
concave function ϕ such that Φ(0) = 0.

Remark 2.1. Some functions of form Φ(u) = a(u)
u√

1− ‖u‖2
, where a : RN → R,

satisfy hypothesis (HΦ). For example, the hypothesis (HΦ) is satisfied when a is
defined by :

a(u) = −4 + u2 + u4

(1 + u2)2
or a(u) = − 4 + 2u2 + 3u4 + u6

(1 + u2)
√

1 + (1 + u2)2
.

In each of theses cases, Φ = ∇ϕ, with ϕ defined on RN by ϕ(u) =
(

1 + 1
1+u2

)√
1− u2

and ϕ(u) =

√
1 + (1 + u2)2

1 + u2

√
1− u2 respectively. We can check that ϕ is concave

and Φ is a monotone homeomorphism such that Φ(0) = 0.
2
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(Hf ) : f : Γ× R× RN → R is a function such that:
(i): for all (r, s) ∈ R2, x 7→ f(x, r, s) is measurable;

(ii): for almost all x ∈ Γ, (r, s) 7→ f(x, r, s) is continuous;
(iii): for all γ > 0, there exist gγ ∈ L∞(Γ)+ such that for almost all x ∈ Γ

and all (r, s) ∈ R2, with |r|, |s| < γ, |f(x, r, s)| < gγ(x).

Remark 2.2. f is said to be a L∞− Caratheodory function when it verifies hy-
potheses (i),(ii) and (iii).

Let’s define our notion of solution of the problem (1.1).

Definition 2.3. We call the solution of the problem(1.1) any function z of C0,1(Γ)
such that

• Φ(∇z) ∈W 1,1(Γ),
• ‖∇z‖∞ < 1,

•
∫

Γ
Φ(∇z(x)).∇w(x)dx =

∫
Γ
f(x, z(x),∇z(x))w(x)dx, for all w ∈W 1,1

0 (Γ).

Remark 2.4. ‖z‖∞ < 1
2diamΓ (See remark 1 of [7]).

Our definition of lower solution and upper solution of the problem (1.1) are the
following:

Definition 2.5. We call the lower solution of the problem(1.1) any function σ of
C0,1(Γ)

• Φ(∇σ) ∈W 1,1(Γ),
• ‖∇σ‖∞ < 1,

•
∫

Γ
Φ(∇σ(x)).∇w(x)dx ≤

∫
Γ
f(x, σ(x),∇σ(x))w(x)dx, for all w ∈ W 1,1

0 (Γ)
such that w ≥ 0.

Definition 2.6. We call the upper solution of the problem(1.1) any function ρ of
C0,1(Γ) such that

• Φ(∇ρ) ∈W 1,1(Γ),
• ‖∇ρ‖∞ < 1,

•
∫

Γ
Φ(∇ρ(x)).∇w(x)dx ≥

∫
Γ
f(x, ρ(x), .∇ρ(x))w(x)dx, for all w ∈ W 1,1

0 (Γ)
such that w ≥ 0.

Remark 2.7. If we set v = f(., u,∇u) ∈ L∞(Γ), then the following problem :

(2.1)

{
− div (Φ(∇z)) = v in Γ

z = 0 on ∂Γ.

has a unique solution u ∈W 2,p(Γ), p ≥ 1 (See lemma 2.2 of [6]). Let’s set

(2.2) D =
{
w ∈ C0,1(Γ) : ‖∇w‖∞ ≤ 1; w = 0 on ∂Γ}

and define the following functional:

(2.3) φv : w 7→
∫

Γ

ϕ(∇w(x))dx+

∫
Γ

v(x)w(x)dx

3
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for all w ∈ D. For any y ∈ D, multiplying (2.1) by z − y and integrating by parts,
we obtain:

(2.4)

∫
Γ

Φ(∇z(x)).∇(z − y)(x)dx =

∫
Γ

v(x)(z − y)(x)dx

Let’s consider the concavity function y 7→ ϕ(y) such that ∇ϕ = Φ. We have

(2.5)

∫
Γ

ϕ(∇y(x))dx−
∫

Γ

ϕ(∇z(x))dx ≤
∫

Γ

Φ(∇z(x)).∇(z − y)(x)dx

From (2.4) and (2.5), it follows:

ϕv(y) ≤ ϕv(z)
This means that both u and z are variational solutions of (2.1) in the sense of [9].

Then Lemma 1.2 of [1] implies that u = z. Thus u ∈W 2,p(Γ) ) for all finite p ≥ 1.

Let’s define the operator T : C1(Γ)→ C1
0 (Γ) which sends any function v ∈ C1(Γ)

onto the unique solution u ∈W 2,p(Γ), for all finite p ≥ 1, of the problem

(2.6)

{
− div (Φ(∇z)) = v in Γ

z = 0 on ∂Γ.

If u is a fixed point of T , then u is a solution of (1.1). Let us consider the following
open ball :

B =
{
y ∈ C1

0 (Γ) : ‖∇y‖∞ < 1
}
.

Lemma 2.8. Suppose that (Hf ) and (HΦ) hold. Then the operator T is continuous,
completely continuous and deg(I − T,B, 0) = 1, where I is the identity operator.

Proof. The proof is similar to the one of Lemma 3.1 of [7]. �

Proposition 2.9. Suppose that (Hf ) and (HΦ) hold. If the problem (1.1) admits
a well ordered lower and upper solution σ and ρ, then it has solutions z1, z2 such
that σ ≤ z1 ≤ z2 ≤ ρ and z1 ≤ z ≤ z2 for any solution z of (1.1) in the functional
interval [σ, ρ]. Moreover, if σ and ρ are strict, then

(2.7) deg(I − T,Λ, 0) = 1,

where
Λ =

{
z ∈ C1

0 (Γ) : σ � z � ρ and ‖∇z‖∞ < 1
}

Proof. proof will be established in several parts.

Claim 1. The problem (1.1) has a solution z belonging to the funtional interval
[σ, ρ].

Proof. Consider the following truncated function for a.e x ∈ Γ and all u ∈ R:

f(x, u, v) =


f(x, σ(x),∇σ(x)) if u ≤ σ(x)

f(x, u, v) if σ(x) < u < ρ(x)

f(x, ρ(x),∇ρ(x)) if u ≥ ρ(x).

Now, consider the following modified problem:

(2.8)

{
− div Φ(∇z(x)) = f(x, z(x),∇z(x)) in Γ

z = 0 on ∂Γ.

4
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Consider the function (σ − z)+ define on Γ by

(σ − z)+(x) =

{
(σ − z)(x) if σ(x) > z(x)

0 if σ(x) ≤ z(x).

We also define the function ∇(σ − z)+ as follow:

∇(σ − z)+(x) =

{
∇(σ − z)(x) if σ(x) > z(x)

0 if σ(x) ≤ z(x).

Recall the following definition of lower solution of (1.1).

(2.9)

∫
Γ

Φ(∇σ(x)).∇w(x)dx ≤
∫

Γ

f(x, σ(x),∇σ(x))w(x)dx

Multiply (2.8) by (σ − z)+ and integrate by parts on Γ. We obtain:

(2.10)

∫ b

0

Φ(∇z(x)).[∇(σ − z)]+(x)dx =

∫ b

0

f(x, z(x),∇z(x)).

Replace w by (σ − z)+ and subtracting (2.9) and (2.8) we obtain:

(2.11)

∫ b

0

(Φ(∇σ(x))− Φ(∇z(x))) .[∇(σ − z)]+(x)dx

≤
∫ b

0

(
f(x, σ(x),∇σ(x))− f(x, z(x),∇z(x))

)
(σ − z)+(x)dx.

Monotony hypothesis on Φ implies that
(2.12)∫ b

0

(Φ(∇σ(x))− Φ(∇z(x))) .[∇(σ − z)]+(x)dx

+ (Φ(∇σ(0))− Φ(∇z(0))(σ − z)+(0)− (Φ(∇σ(b))− Φ(∇z(b)))(σ − z)+(b) ≥ 0.

We deduce that∫
Λ

(Φ(∇σ(x))− Φ(∇z(x))) .[∇(σ − z)]+(x)dx

+ (Φ(∇σ(0))− Φ(∇z(0))(σ − z)+(0)− (Φ(∇σ(b))− Φ(∇z(b)))(σ − z)+(b) ≥ 0,

where Λ = {x ∈ Γ : σ(x) ≥ z(x)}.
Furthermore, on Λ, f(x, σ(x),∇σ(x))− f(x, z(x),∇z(x)) = 0. Then (2.10) implies
(2.13)∫

Λ

(Φ(∇σ(x))− Φ(∇z(x))) .[∇(σ − z)]+(x)dx

+ (Φ(∇σ(0))− Φ(∇z(0))(σ − z)+(0)− (Φ(∇σ(b))− Φ(∇z(b)))(σ − z)+(b) = 0.

The strict monotonicity of Φ and Φp imply (σ− z)+ = 0. Thus z ≥ σ. Similarly, we
show that z ≤ ρ. �

Claim 2. Problem (1.1) has a solution in [σ, ρ].
5
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Proof. Let us consider the operator T ∗ : C1(Γ) → C1
0 (Γ) which sends any function

of v ∈ C1(Γ) onto the unique solution z of

(2.14)

{
− (Φ(∇z(x)))

′
= f(x, v(x), v′(x)) in Γ

z = 0 on ∂Γ.

By lemma 2.8,

(2.15) deg(I − T ∗, B, 0) = 1.

Then T ∗ has a fixed point z which is solution of (2.14). By the above arguments
z ∈ [σ, ρ] and z is solution of (1.1).

�

Claim 3. The problem (1.1) has extremal solutions.

Proof. Let us consider the set Ω =
{
z ∈ C1

0 (Γ) : z = Tz and σ ≤ z ≤ ρ
}

. By Lemma
2.8, T is compact. The proof of claim 1 shows that Γ is nonempty. To show that
the set Ω has a minimal element, consider the following set:

Uz = {u ∈ Ω : u ≤ z} .

Let z1, z2 ∈ Uz. Then, min {z1, z2} ≥ σ. By the proof of claim 1, there exists a
solution z of (1.1) such that σ ≤ z ≤ min {z1, z2} ≤ ρ. Then Uz1 ∩ Uz2 6= ∅.The
compactness of Ω implies that there exists v ∈

⋂
z∈Ω Uz. Therefore, v is the minimal

solution of (1.1) belonging to [σ, ρ]. By analogous reasoning, we show that (1.1)
admits a maximal solution in [σ, ρ]. �

Claim 4. deg(I − T,Λ, 0) = 1.

Proof. Suppose that (1.1) admits a strict lower solution σ and a strict upper solution
ρ. Then there exists a solution z of (1.1) which satisfies σ < z < ρ. As consequence,
the open set Λ is nonempty and bounded subset of C1(Γ) such that there no fixed
point of T and T ∗ on the boundary ∂Λ. In addition, T and T ∗ coincide in Λ. Whence

deg(I − T ∗,Λ, 0) = deg(I − T,Λ, 0).

T ∗ has no fixed point in BR+M(b+1) \ Λ. Then excision property of the degree and
(2.15) led to

deg(I − T ∗,Λ, 0) = deg(I − T ∗, B, 0).

Therefore

deg(I − T,Λ, 0) = 1.

�

�

Proposition 2.10. Suppose that (Hf ) and (HΦ) hold. If the problem (1.1) admits
a strict lower solution σ and a strict upper solution ρ, with σ � ρ, then it admits at
least three solutions z1, z2, z3 such that

(2.16) z1 ≤ z2 ≤ z3, z1 � ρ, z1 � σ, z2 � ρ, z3 � σ.
6
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Proof. Let us consider the function fλ defined as follows

fλ(x, r, s) =


ar+bs if λ < |r| < λ+ 1

f(x, r, s) if |r| ≤ λ
0 if |r| ≥ λ+ 1

where a, b are real constants, λ = max
{
‖σ‖∞, ‖ρ‖∞, 1

2diamΓ
}

. fλ is a Lp−Carathéodory
function. Let us consider the following modified problem: :

(2.17)

{
− (Φ(∇z(x)))

′
= fλ(x, z(x),∇z(x)) in Γ

z = 0 on ∂Γ.

The choice of λ implies that any solution of (2.17) is solution of (1.1). σ and ρ
are also strict lower solution and strict upper solution of (2.17) respectively. The
constants σ = −λ − 1 and ρ = λ + 1 are also strict lower solution and strict upper
solution of (2.17) respectively. We consider the following subsets of C1(Γ):

Πσ,ρ =
{
z ∈ C1

0 (Γ) : σ � z � ρ and ‖∇z‖∞ < 1
}
,

Πσ,ρ =
{
z ∈ C1

0 (Γ) : σ � z � ρ and ‖∇z‖∞ < 1
}
,

Πρ,σ =
{
z ∈ C1

0 (Γ) : σ � z � ρ and ‖∇z‖∞ < 1
}
,

where u� v means that there is ε > 0 such that u(x)+εdist(x, ∂Γ) ≤ v(x) for every
x ∈ Γ. We have Πσ,ρ ⊂ Πρ,σ and Πσ,ρ ⊂ Πρ,σ and Πσ,ρ ∩Πσ,ρ = ∅. As a result,

(2.18) 0 /∈ (I − Tλ) (∂Πσ,ρ ∪ ∂Πσ,ρ ∪ ∂Πρ,σ)

because σ and σ are strict lower solutions of (2.17) and ρ and ρ are strict upper
solutions of (2.17). The operator Tλ : C1(Γ)→ C1

0 (Γ) sends any function v ∈ C1(Γ)
on the unique solution z ∈ C1(Γ) of

(2.19)

{
− (Φ(∇z(x)))

′
= fλ(x, v(x), v′(x)) in Γ

z(0) = (z(b) = 0.

Let us consider the open set

A = Πσ,ρ \ (Πσ,ρ ∪Πσ,ρ)

(2.18) and the excision property of the degree led to

deg (I − Tλ,Πσ,ρ, 0) = deg (I − Tλ,Πσ,ρ \ (∂Πσ,ρ ∪ ∂Πσ,ρ) , 0)

Then the additivity property of the degree yields

deg (I − Tλ,Πσ,ρ, 0) = deg (I − Tλ,Πσ,ρ, 0)+deg (I − Tλ,Πσ,ρ, 0)+deg (I − Tλ, A, 0)

By proposition 2.9, we have

deg (I − Tλ,Πσ,ρ, 0) = deg (I − Tλ,Πσ,ρ, 0) = deg (I − Tλ,Πσ,ρ, 0) = 1.

Using the above arguments, we obtain

deg (I − Tλ, A, 0) = −1.

As result the operator Tλ admits three distinct fixed points z1, z2, z3 such that

z1 ∈ Πσ,ρ z2 ∈ Πσ,ρ z3 ∈ A.
7
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Then

z1 � ρ z1 � σ, z2 � ρ, z3 � σ

We know that the problem (2.19) admits extremal solutions v, w in [σ, ρ]. Suppose
that v = z1 and w = z3. Then (2.19) and (1.1) have three distincts solutions which
satisfy (3.4). �

Let us define in D the following operator:

(2.20) ψ(r) =

∫
Γ

ϕ(r′(x))dx+

∫
Γ

F (x, r(x), r′(x))dx

where F (x, r, s) =
∫ r

0
f(x, r, s)dr.

Proposition 2.11. Suppose that (Hf ) and (HΦ) hold. Suppose there exist a lower
solution σ and an upper solution ρ, with σ ≤ ρ. Then there is a solution z that
maximizes the functional Ψ over the set {z ∈ D : σ ≤ z ≤ ρ} , where D is defined by
(2.2).

Proof. Consider the following functional Ψ defined over the set D by

Ψ(r) =

∫
Γ

ϕ(r′(x))dx+

∫
Γ

F (x, r(x), r′(x))dx

where F (x, r, s) =
∫ r

0
f(x, r, s)dr. By the proof of the proposition 1 of [9], there

is z ∈ D which maximizes ψ over D. This means that
(2.21)∫

Γ

ϕ(∇z(x))dx+

∫
Γ

F (x, z(x),∇z(x))dx ≥
∫

Γ

ϕ(r′(x))dx+

∫
Γ

F (x, r(x), r′(x))dx

for all r ∈ D. Let us choose r such that r = z + κ(j − z) where (κ, j) ∈ [0, 1] ×D.
By replacing r with its expression in (2.20) and then using concavity, we obtain
(2.22)∫

Γ

ϕ(∇z(x))dx+

∫
Γ

F (x, z(x),∇z(x))dx

≥
∫

Γ

ϕ(∇z(x) + κ∇(j − z)(x))dx+

∫
Γ

F (x, z(x) + κ(j − z)(x),∇z(x) + κ∇(j − z)(x))dx

≥ κ
∫

Γ

ϕ(∇j(x))dx+ (1− κ)

∫
Γ

ϕ(∇z(x))dx

+

∫
Γ

F (x, z(x) + κ(j − z)(x),∇z(x) + κ∇(j − z)(x))dx

From (2.22), we have
(2.23)∫

Γ

ϕ(∇z(x))dx−
∫

Γ

ϕ(∇j(x))dx

≥
∫

Γ

F (x, z(x) + κ(j − z)(x),∇z(x) + κ∇(j − z)(x))− F (x, z(x),∇z(x))

κ
dx

≥
∫

Γ

F (x, z(x) + κ(j − z)(x),∇z(x) + κ∇(j − z)(x))− F (x, z(x),∇z(x))

κ(j − z)(x)
(j − z)(x)dx.

8
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Passing to the limit when κ tends to 0 and using the dominated convergence theorem,
we obtain∫

Γ

ϕ(∇z(x))dx−
∫

Γ

ϕ(∇j(x))dx ≥
∫

Γ

f(x, z(x),∇z(x))(j − z)(x)dx.

Then,∫
Γ

ϕ(∇z(x))dx+

∫
Γ

f(x, z(x),∇z(x))z(x)dx ≥
∫

Γ

f(x, z(x),∇z(x))j(x)dx+

∫
Γ

ϕ(∇j(x))dx,

for all j ∈ D. Consider any solution w ∈ C1(Γ) of (2.1). Let us set v = f(., z(.),∇z(.))
in (2.1). w and z maximize the functional φv over D. Then w and z are variational
solutions of (2.1). Whence u = z. Then u is solution of the modified problem
(2.14). As result u is solution of (1.1) and u ∈ [σ, ρ]. u maximizes Ψ over the set
{s ∈ D : σ ≤ s ≤ ρ}. �

3. Main results

Theorem 3.1. Suppose (Hf ) and (HΦ) hold. If the problem(1.1) admits a well
ordred lower and upper solutions σ and ρ, then it has at least one solution u such
that σ ≤ u ≤ ρ.

Proof. This result follows immediatly from the proposition 2.9 �

Theorem 3.2. Suppose (Hf ) and (HΦ) hold. If the problem(1.1) admits a lower
solution σ, then it has at least one solution u such that u ≥ σ.

Proof. Let us consider the problem (2.17). Let us take λ = max
{
‖σ‖∞, 1

2diamΓ
}

and ρ = λ+ 1. Then σ and ρ are a well ordered lower and upper solutions of (2.17).
By proposition 2.9, (2.17) has at least one solution in [σ, 1

2diamΓ]. It follows that

(1.1) has at least one solution in [σ, 1
2diamΓ]. �

Theorem 3.3. Suppose (Hf ) and (HΦ) hold. If the problem(1.1) admits a upper
solution ρ, then it has at least one solution u such that u ≤ ρ.

Proof. The proof is similaire to that of the theorem 3.2. �

Theorem 3.4. Suppose (Hf ) and (HΦ) hold. If the problem(1.1) admits a strict
lower solution σ and a strict upper solution, with σ � ρ. Then it admits at least
three solutions z1, z2, z3 such that

z1 ≤ z2 ≤ z3, z1 � ρ, z1 � σ, z2 � ρ, z3 � σ.

Proof. See the proof of proposition 2.10. �

Theorem 3.5. Suppose (Hf ) and (HΦ) hold. If the problem(1.1) admits a lower
solution σ and a upper solution ρ such that σ � ρ, then it has at least two solutions
z1, z2 such that

z1 < z2, z1 ≤ ρ z2 ≥ σ.

Proof. Let σ and ρ be a not well ordered lower and upper solutions of (1.1). Let’s set
λ = max

{
‖σ‖∞, ‖ρ‖∞, 1

2diam Γ
}

, σ = λ+1 and ρ = −λ−1. Then σ is strict lower-
solution of (1.1) and ρ is a strict upper-solution of (1.1) such that σ � min {σ, ρ}
and ρ � max {σ, ρ}. Then, by proposition 2.9, there exist z1, z2 solutions of (1.1)
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such that σ < z1 ≤ min {σ, ρ} and max {σ, ρ} ≤ z2 < ρ. So, z1 < z2, z1 ≤ ρ z2 ≥
σ. �

Theorem 3.6. Suppose (Hf ) and (HΦ) hold. If the problem(1.1) admits a lower so-
lution σ, σ and a upper solution ρ, ρ, with σ, ρ strict, σ ≤ min {σ, ρ} ≤ max {σ, ρ} ≤
ρ and σ � ρ. The problem admits at least Three solutions z1, z2, z3 such that

σ ≤ z1 < z2 < z3 ≤ ρ, z2 � σ, z2 � ρ, z3 � σ.

Proof. Let σ and ρ be a not well ordered strict lower and strict upper solutions of
(1.1). Consider the functional intervals [σ,min {σ, ρ}], [min {σ, ρ} ,max {σ, ρ}] and
[max {σ, ρ} , ρ]. Since σ � ρ and σ, ρ strict, there exists a solution z2 of (1.1) such
that ρ(x) < z2(x) < σ(x), ∀x ∈ Γ. Then z2 ∈ ]min {σ, ρ} ,max {σ, ρ}[. By propo-
sition 2.9, each of intervals [σ,min {σ, ρ}] and [max {σ, ρ} , ρ] respectively contains
solutions z1, z3 of (1.1). Then σ(x) ≤ z1(x) < z2(x) < z3(x) ≤ ρ(x), ∀x ∈ Γ.
Therefore, we have

σ ≤ z1 < z2 < z3 ≤ ρ, z2 � σ, z2 � ρ, z3 � σ.

�

Theorem 3.7. Suppose (Hf ) and (HΦ) hold. Suppose there exist a lower solution
σ and an upper solution ρ, with σ ≤ ρ. Then there is a solution z that maximizes
the functional Ψ over the set {z ∈ D : σ ≤ z ≤ ρ} , where D is defined by (2.2).

Proof. See the proof of proposition 2.11. �

Remark 3.8. Since ‖z‖∞ <
1

2
diamΓ, taking−max

{
‖ρ‖∞, 1

2diamΓ
}

and max
{
‖σ‖∞, 1

2diamΓ
}

as lower and upper solutions respectively , then by theorem 3.7, the problem (1.1)
admits some solutions z1 and z2 that maximizes the functional Ψ over the sets
{z ∈ D : z ≤ ρ} and {z ∈ D : σ ≤ z} respectively, where D is defined by (2.2).

4. Examples

A few application examples were given in [7], and we’ll repeat them, in example
1, with a few slight modifications linked to the differential operator.

Example 1. Let us consider the following problem:

(4.1)

 − div

(
4 + ‖∇z(x)‖2 + ‖∇z(x)‖4

(1 + ‖∇z(x)‖2)2

∇z(x)√
1− ‖∇z(x)‖2

)
= λzp(x) in Γ

z = 0 on ∂Γ,

with p > 0 and λ > 0. Here

Φ(u) = −4 + ‖u‖2 + ‖u‖4

(1 + ‖u‖2)2

u√
1− ‖u‖2

, f(x, u,∇u) = λup ∀u ∈ R.

10
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In order to construct a strictly positive lower-solution σ to (4.1), consider the
following problem
(4.2) − div

(
4 + ‖∇z(x)‖2 + ‖∇z(x)‖4

(1 + ‖∇z(x)‖2)2

∇z(x)√
1− ‖∇z(x)‖2

)
= λ(z+(x))p in Ω

z = 0 on ∂Ω,

where Ω is a fixed open ball of Γ and Ω ⊂ Γ, z+(x) = max {z(x), 0}. From [6]
proposition 2.7, the problem (4.2) admits at least one solution z ∈ C2(Ω) and z � 0.
Let us define the function σ ∈ C0,1(Γ) such that

σ(x) =

{
z+(x) if x ∈ Ω

0 if x ∈ Γ \ Ω

then σ is a strict lower solution of (4.1)(for more details, see example 1 of [7]).

Remark 4.1. Examples 2,3,4 of [7] considered with operator Φ defined above, are
also examples of applications.

Example 2.
(4.3)

− div

(
4 + 2‖∇z(x)‖2 + 3‖∇z(x)‖4 + ‖∇z(x)‖6

(1 + ‖∇z(x)‖2)
√

1 + (1 + ‖∇z(x)‖2)2

∇z(x)√
1− ‖∇z(x)‖2

)
= −z(x)

+ λ∗‖∇z(x)‖q + min {1, ‖x‖} in Γ

z = 0 on ∂Γ,

where λ∗ > 0, q > 0 and

Φ(u) = − 4 + 2u2 + 3u4 + u6

(1 + u2)
√

1 + (1 + u2)2

√
1− ‖u‖2 ∀u ∈ RN .

The constant functions σ(x) = 0 and ρ(x) = 2 are respectively well-ordered
lower and upper solutions of (4.3). Therefore, by theorems 3.1; 3.2; 3.3 and 3.7,
there is at least one solution.

5. Conclusion

In this article, we have studied a second order nonlinear partial differential equa-
tion driven by the nonlinear differential operator − div (Φ(∇u)), with homogeneous
Dirichlet boundary conditions. By combining the method of lower and upper so-
lution, variational method and theory of topological degree, we have established
existence of solution when the problem admits a unique lower solution or a unique
upper solution and a multiplicity of solution when the problem admits a lower solu-
tion and upper solution which may or not well-ordered.
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